
SPARK: Self-supervised Personalized Real-time Monocular Face Capture
KELIAN BAERT, Technicolor Group, France and University Rennes, France
SHRISHA BHARADWAJ,Max Planck Institute for Intelligent Systems, Germany
FABIEN CASTAN, Technicolor Group, France
BENOIT MAUJEAN, Technicolor Group, France
MARC CHRISTIE, University Rennes, IRISA, CNRS, Inria, France
VICTORIA F. ABREVAYA,Max Planck Institute for Intelligent Systems, Germany
ADNANE BOUKHAYMA, Inria, University Rennes, IRISA, CNRS, France

Fig. 1. After a personalization step, SPARK can reconstruct accurate faces with expressive details on unseen images in real-time.

Feedforwardmonocular face capturemethods seek to reconstruct posed faces
from a single image of a person. Current state of the art approaches have the
ability to regress parametric 3D face models in real-time across a wide range
of identities, lighting conditions and poses by leveraging large image datasets
of human faces. These methods however suffer from clear limitations in that
the underlying parametric face model only provides a coarse estimation of
the face shape, thereby limiting their practical applicability in tasks that
require precise 3D reconstruction (aging, face swapping, digital make-up,...).
In this paper, we propose a method for high-precision 3D face capture
taking advantage of a collection of unconstrained videos of a subject as
prior information. Our proposal builds on a two stage approach. We start
with the reconstruction of a detailed 3D face avatar of the person, capturing
both precise geometry and appearance from a collection of videos. We
then use the encoder from a pre-trained monocular face reconstruction
method, substituting its decoder with our personalized model, and proceed
with transfer learning on the video collection. Using our pre-estimated
image formation model, we obtain a more precise self-supervision objective,
enabling improved expression and pose alignment. This results in a trained
encoder capable of efficiently regressing pose and expression parameters
in real-time from previously unseen images, which combined with our
personalized geometry model yields more accurate and high fidelity mesh
inference.

Through extensive qualitative and quantitative evaluation, we showcase
the superiority of our final model as compared to state-of-the-art baselines,
and demonstrate its generalization ability to unseen pose, expression and
lighting.

CCS Concepts: • Computing methodologies →Machine learning.

Additional Key Words and Phrases: Face Capture, Face Reconstruction, Per-
sonalized Avatars
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1 INTRODUCTION
3D facial performance capture is a key component in several appli-
cations, including immersive telepresence in AR or VR and visual
effects for the entertainment industry. Producing high-quality re-
sults, however, often requires large financial, time and resource
investments. This involves not only expensive 3D capture equip-
ment [Beeler et al. 2010; Debevec et al. 2000], precise marker-based
tracking systems [Bennett and Carter 2014] or head-mounted dis-
plays [Brito and Mitchell 2019], but also extensive hours of capture
sessions from the actor. Marker-less capture setups are promising
solutions for simplifying this pipeline, however high-quality results
still rely on complex rigs [Helman et al. 2020] or large, personalized
training datasets [Laine et al. 2017; Wu et al. 2018].

At the other end of the spectrum are 3D reconstruction methods
that can operate on images or videos from affordable consumer-
grade hardware. The main idea is to use statistical models of the
3D face — so-called 3D Morphable Models (3DMMs) — which are
fitted to RGB images or 2D landmarks using optimization-based
[Andrus et al. 2020; Zielonka et al. 2022] or learning-based methods
[Danecek et al. 2022; Feng et al. 2021; Retsinas et al. 2024]. The
prior knowledge from the statistical model helps to overcome the
ill-posed nature of the problem, and the development of learning-
based techniques has enabled unprecedented robustness to pose,
illumination and occlusions. However, this comes at the cost of
lower geometric quality, providing only a coarse approximation of
the shape and expression which falls well short of high-end systems.
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Neural head avatars were recently proposed to address some of
the limitations of 3DMM-based methods. The goal here is to train
a model from a single monocular video, that can afterwards be
animated with novel expressions [Grassal et al. 2022; Zheng et al.
2022, 2023] and optionally environments [Bharadwaj et al. 2023].
The key idea is to harness advances in neural rendering [Hasselgren
et al. 2022; Munkberg et al. 2022] which allow to better model
geometric and appearance details. While this results in images of
higher quality, the estimated 3D geometry still remains behind
production systems. Furthermore, the computational costs of such
approaches prevent them from running in real-time or even close
to real-time contexts.

In this paper we aim to bridge the gap between these two worlds
by answering the following: given a collection of unconstrained
videos of a person as prior information, can we build a per-
sonalized real-time tracker that regresses higher quality ge-
ometry? Video collections offer a valuable middle ground between
high-end capture systems and consumer-grade solutions. Without
requiring complex, non-portable hardware, we can leveragemultiple
videos with a variety of illuminations and potentially more diverse
poses to better constrain the problem of 3D face reconstruction.
More specifically, we propose SPARK, a novel method to build

personalized, high-quality 3D facial models that can be tracked in
real-time. Our approach consists of two key steps: (1) constructing
a personalized 3D mesh and deformation model from a collection of
in-the-wild videos, and (2) training a fast, regression-based tracker
that can provide accurate reconstructions given a novel image. The
challenge here is two-fold. First, we need to design a systemwith the
capacity to distill high-fidelity geometry from contents with very
diverse lighting conditions, color tones and appearances. To this end,
we leverage recent advances in unsupervised efficient inverse neural
rendering (e.g. [Bharadwaj et al. 2023; Zheng et al. 2022; Zielonka
et al. 2023]) and adapt them to the multi-video case. Second, we
need to recover a high fidelity topologically consistent 3D facial
geometry in real time. Rooted in transfer learning, our idea is to
consolidate the benefits of state-of-the-art generalizable 3D face
capture methods (e.g. [Danecek et al. 2022; Feng et al. 2021]) that
were trained on a large in-the-wild image corpora, and propose an
efficient method for adapting to the specific subject, leveraging the
results from the previous step.

Through quantitative and qualitative evaluations, our experimen-
tal results show that we can generalize successfully to unseen light-
ing, expressions and poses, and are capable of producing accurate
geometries in real time. Our method outperforms competing tech-
niques with similar inference times offering, more accurate poses
and expressions, together with more expressive meshes.
In summary, our contributions are:

• A new method using multiple monocular videos of a person
to estimate the 3D shape and range of deformations of a face,
with fine geometric details essential for facial expressiveness.

• A transfer learning approach that enables fine-tuning a face
tracking method for a specific subject using a pre-estimated
personalized geometry and appearance model, while still
being able to generalize to different lightings, poses and ex-
pressions.

• Thorough evaluations of our proposed approach, including
two new metrics for evaluating the posed geometry without
3D ground truth.

2 RELATED WORK
Head avatars from video. There have been many efforts towards

the democratization of animatable 3D head avatar creation via com-
modity sensors, as opposed to costly traditional capture systems
[Beeler et al. 2011; Debevec et al. 2000; Ghosh et al. 2011; Riviere
et al. 2020]. Traditional methods [Garrido et al. 2016; Thies et al.
2016a] utilize statistical models [Blanz and Vetter 1999] to recon-
struct 3D shape and appearance, but they result in relatively coarse
reconstructions. NerFACE [Gafni et al. 2021] pioneered in using
dynamic neural radiance fields (NeRF) [Mildenhall et al. 2020] to
create head avatars. IMavatar [Zheng et al. 2022] achieves precise ge-
ometry recovery by using implicit surfaces, simultaneously learning
canonical head geometry and expression deformations. However,
methods relying on implicit representations often suffer from ineffi-
ciencies in training and rendering. PointAvatar [Zheng et al. 2023]
adopts a similar deformation model but uses an explicit point cloud
representation, facilitating faster rasterization and improved im-
age quality. Recently, several approaches [Gao et al. 2022; Xu et al.
2023; Zielonka et al. 2023] have leveraged InstantNGP [Müller et al.
2022] to accelerate radiance field queries, enabling avatar recon-
struction within 5 to 20 minutes. Contemporary work proposes to
build avatars through Gaussian Splatting (3DGS) [Kerbl et al. 2023]
by anchoring gaussians to a coarse underlying control geometry
[Ma et al. 2024; Qian et al. 2023; Xu et al. 2024]. However, there
is no clearly established mechanism to robustly extract topologi-
cally consistent detailed meshes from these models. Neural Head
Avatar [Grassal et al. 2022] creates mesh-based avatars containing
full head and hair geometry. Despite this, the resulting geometry is
relatively coarse, with many details rendered in the texture space.
The recent FLARE [Bharadwaj et al. 2023] constructs high-quality
mesh-based avatars within 15 minutes, while decomposing appear-
ance into albedo, roughness, and extrinsic illumination. We build
on this method in our avatar reconstruction in-the-wild stage, by
extending it to a novel multi monocular video setting, in addition
to introducing several improvements to enhance efficiency and ex-
pressiveness.

3D monocular face capture. Model-free methods can learn to di-
rectly infer meshes [Abrevaya et al. 2019; Alp Guler et al. 2017;
Deng et al. 2020; Dou et al. 2017; Feng et al. 2018; Jung et al. 2021;
Ruan et al. 2021; Sela et al. 2017; Szabó et al. 2019; Wei et al. 2019;
Wu et al. 2020; Zeng et al. 2019], voxels [Jackson et al. 2017], or
Signed Distance Functions [Yenamandra et al. 2021]. However, they
require extensive 3D training data, and they can also suffer from
limited expressiveness and generalization due to the synthetic/real
domain gap [Dou et al. 2017; Sela et al. 2017; Zeng et al. 2019], with
many of them relying on synthetic training data. 3DMMs (e.g. BFM
[Paysan et al. 2009], FaceWarehouse [Cao et al. 2013], FLAME [Li
et al. 2017]) can be fitted to images through test-time analysis-by-
synthesis optimization [Aldrian and Smith 2012; Bas et al. 2017;
Blanz et al. 2002; Blanz and Vetter 1999; Cao et al. 2014; Garrido
et al. 2016; Gerig et al. 2018; Koizumi and Smith 2020; Li et al. 2013;
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Ploumpis et al. 2021; Romdhani and Vetter 2005; Thies et al. 2015,
2016a,b], but these are not useful for time-sensitive applications.
Recent deep learning based models offer robust and fast inference,
either in their supervised [Cao et al. 2015; Chang et al. 2018; Guo
et al. 2020; Kim et al. 2018; Richardson et al. 2016; Tran et al. 2017,
2018; Zhang et al. 2023; Zhu et al. 2016; Zielonka et al. 2022] or
weakly/self-supervised [Abrevaya et al. 2020; Alp Guler et al. 2017;
Danecek et al. 2022; Deng et al. 2019; Feng et al. 2021; Genova et al.
2018; Liu et al. 2017; Sanyal et al. 2019; Shang et al. 2020; Tewari
et al. 2019, 2018, 2017; Wood et al. 2022; Yang et al. 2020] forms.
Most notably, recent self-supervised models DECA [Feng et al. 2021]
and EMOCA [Danecek et al. 2022] offer arguably state-of-the-art
animatable geometry inference performance. Their encoders predict
3DMM, camera and spherical harmonics coefficients used to render
and compare a morphable geometry to images in the wild for large
scale training. Despite their additional mesh detail regression, they
still showcase expression generalization and alignment issues, and
their generic FLAME [Li et al. 2017] based geometry can lack expres-
siveness and fidelity. To remedy these issues, and in contrast with
existing literature, we propose to personalize such models using
solely a few monocular videos.

3 METHOD
At inference, our system takes as input an image of a subject and
generates a 3D face reconstruction including pose and expression in
real time. At training time, our work follows a two-stage approach as
illustrated in Fig. 2. First we leverage an unconstrained collection of
video sequences of the same subject to build a personalized decoder
using inverse rendering in a stage called MultiFLARE, in which we
disentangle the color into illumination and intrinsic material (see top
row in Fig. 2). Second, we adapt a generalizable feedforward 3D face
capture model by replacing its decoder with the customMultiFLARE
geometry model, and tuning its encoder on the video collection
using the pre-computed reflectance functions. In the following, we
detail these two stages.

3.1 MultiFLARE: Inverse rendering from a video collection
Feedforward face reconstruction methods leverage a generic statis-
tical model for geometry and appearance, serving as a differentiable
image formation layer for image based self-supervised learning.
We replace this with a new differentiable decoder built efficiently
from our adaptation data through inverse rendering. Conjointly, the
inverse rendering allows us to estimate a reflectance function per
adaptation sequence. We detail in the following the optimization
leading to these personalized geometry and reflectance functions.

Geometry and Deformation. We use a triangular mesh as our
geometry representation and build on the FLAME 3DMM [Li et al.
2017]. The personalized shape is obtained in canonical space by
optimizing the template vertices, similarly to PointAvatar [Zheng
et al. 2023] and FLARE [Bharadwaj et al. 2023]. A given point 𝑥𝑐 in
canonical space is then deformed for pose and expression using the
following equation:

𝐹𝐿𝐴𝑀𝐸 (𝑥𝑐 ,P, E,W, \,𝜓 ) =
𝐿𝐵𝑆 (𝑥𝑐 + 𝐵𝑃 (\ ;P) + 𝐵𝐸 (𝜓 ; E), 𝐽 (𝛽), \,W) (1)

where LBS is the standard linear blend-skinning function, 𝐽 is the
joint regressor used to compute joint locations from mesh vertices,
W ∈ R𝑛𝑉 ×𝑛 𝑗 are per-vertex blend-skinning weights, 𝐵𝑃 (·) and
𝐵𝐸 (·) compute pose and expression offsets given pose correctives
P and expression blendshapes E. 𝛽 , \ and 𝜓 are respectively pre-
computed FLAME parameters for shape, pose and expression. We
follow IMavatar [Zheng et al. 2022] and FLARE in personalizing
the expression blendshapes by training a deformation network D
that predicts the expression basis E ∈ R𝑛𝑒 given canonical vertex
location 𝑥𝑐 :

D(𝛾 (𝑥𝑐 )) : R3 → E (2)

We apply sinusoidal positional encoding 𝛾 (·) to map canonical po-
sitions into a higher dimensional space, enabling the network to
model higher frequency variations. D is initialized in a separate
supervised pre-training stage that minimizes | |D(𝛾 (𝑥))−E||2 at the
positions of the canonical FLAME vertices, such that the network
initially mimics the FLAME expression basis E. Note that this stage
is completed in under a minute, as we are only performing forward
and backward passes through D and not rendering.

We perform remeshing [Botsch and Kobbelt 2004] of the canonical
geometry after a fixed number of training iterations to increase its
resolution.

Illumination. Modelling the appearance is challenging in our set-
ting as we have 𝑁 videos of each subject with varying illumination
conditions. Moreover, the personalized canonical geometry is depen-
dent on the learning of the appearance, as we optimize the geometry
through deferred shading. Hence, to handle multiple videos, we dis-
entangle the color into illumination and intrinsic materials such
as albedo, roughness and specular intensity. However, our dataset
by design has in-the-wild videos that are low-dynamic range and
have uncontrolled lighting conditions such as over/under-exposed
frames. Thus, it is non-trivial tomodel the illumination and disadvan-
tageous to represent it using HDRI maps. To tackle this, we follow
FLARE and split the rendering equation into a diffuse term using a
Lambertian model and a specular term through the Cook-Torrance
microfacet model [Cook and Torrance 1982], which is evaluated
using the neural split-sum approximation. More specifically, the
illumination is represented by a single MLP controlled using In-
tegrated Directional Encoding [Verbin et al. 2022] (IDE) to mimic
different mipmap levels regulated by the surface roughness. We
kindly refer the readers to FLARE [Bharadwaj et al. 2023] for more
details and for the sake of simplicity, we denote the neural split-sum
approximation (including IDE and the precomputed look-up table
FG-LUT ) as L, such that:

L(𝑛, 1) = 𝑙𝑑 L(𝜔, 𝑟 ) = 𝑙𝑠 (3)

where n is the surface normal, 𝜔 is the reflection vector, 𝑟 is the
roughness, 𝑙𝑑 represents the diffuse shading and 𝑙𝑠 represents the
specular shading. To adapt to our setting, we extend this to 𝑁 ap-
proximations given by {L1, . . . ,L𝑁 } and optimize the parameters
for each illumination seperately: {𝑙1

𝑑
, . . . 𝑙𝑁

𝑑
} and {𝑙1𝑠 , . . . 𝑙𝑁𝑠 }.

Intrinsic material properties. We learn the albedo, roughness and
specular intensity through a MLP M in canonical space as intro-
duced by FLARE. Contrary to the illumination, which is learned
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Fig. 2. Illustration of our-two stage adaptation process. In stage 1, we rely on a collection of different video sources of the same person to build a personalized
geometry decoder through inverse rendering. In stage 2, the 3DMM of a generalizable feedforward face capture network is swapped with the new decoder,
and the encoder is tuned by reconstructing the same adaptation video frames leveraging the pre-estimated reflectance function for each video.

separately for each video, we make the assumption that the person’s
intrinsic appearance varies little between videos and learn a single
set of material properties.M takes canonical points (𝑥𝑐 ) as inputs
and predicts the albedo 𝜌 , roughness 𝑟 and specular intensity 𝑘 :

M(𝑥𝑐 ) : R3 → 𝜌, 𝑟, 𝑘 (4)

The final color for the 𝑖𝑡ℎ video is calculated as follows:

𝐶 = 𝜌 · 𝑙𝑖
𝑑
+ 𝑘 · 𝑙𝑖𝑠 (5)

Thus, we enforce consistency in the intrinsic materials by design
by using the same network M to calculate the final color for 𝑁
illuminations. The learnable illumination, along with shared subject-
specific geometry and material properties are optimized through
inverse rendering using differentiable rasterization.

3.2 Face Tracker Adaptation
Standard 3D face reconstruction networks (e.g. [Danecek et al. 2022;
Feng et al. 2021; Retsinas et al. 2024]) typically consist of an encoder,
that we denote 𝐸𝜙 , with parameters 𝜙 . They predict shape, pose
and expression parameters, among others. Combined with a 3D
morphable model and a relatively simple appearance representa-
tion, such methods learn self-supervisedly from images through
inverse rendering. We wish to benefit from the feedforward pre-
diction capabilities of such encoders, whose large-scale training
enables generalization to a large variety of illuminations, poses and
expressions, and associate this ability with our superior expres-
sive personalized geometry decoder, as opposed to a vanilla 3DMM.
Without loss of generality, we build on EMOCA [Danecek et al.
2022], which uses the FLAME 3DMM.
From the previous stage, we recover a personalized geometric

model, through the identity-specific canonical positions 𝑥𝑐 and ex-
pression deformation basis E (Eq. 1). We also obtain a personalized

reflectance function (Eq. 5) allowing us to render this custom geom-
etry, with intrinsic materials of the subject’s face (𝜌, 𝑟, 𝑘), along with
lighting for the training sequences (𝑙𝑖

𝑑
, 𝑙𝑖𝑠 ). We now freeze our canon-

ical geometry, appearance and deformation models. We compute
the expression basis E and intrinsic materials (𝜌, 𝑟, 𝑘) according to
Eq. 2 and Eq. 4 respectively. Whilst our personalized MultiFLARE
geometry model is built starting from FLAME, its final canonical ge-
ometry and deformation basis deviate from their original definition
due to their personalization (Section 3.1). In fact, simply swapping
FLAME for our personalized estimations in EMOCA leads to very
suboptimal results, as can be seen in Table 2.

Hence, inspired by few-shot adaptation literature (e.g. [Gao et al.
2024; Zhou et al. 2022]), we propose to tune the encoder in order
to adapt its output latent space (\ and𝜓 ) to our new personalized
geometry representation. Specifically, we update the weights of the
last ResNet block [He et al. 2016] of the backbone and the entire MLP
head, for both the coarse shape encoder and the expression encoder
of EMOCA. This allows us to adapt to the modified regression task
while retaining the general features learned in earlier layers [Lee
et al. 2022], as our objective can be akin to alleviating output level
shift in the regression task.

3.3 Training details
In this section, we provide information regarding the training of both
stages of our method. More details are available in our supplemental
material.

3.3.1 MultiFLARE.

FLAME regularization. Previous methods, namely the aforemen-
tioned IMavatar, PointAvatar and FLARE, regularize the deforma-
tions using the FLAME values at the nearest vertex, which can
be computed for arbitrary mesh topologies and various geometry
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representations. Our original canonical geometry uses the FLAME
topology and only changes at the remeshing step. Thus, we update
the FLAME expression basis by projecting the remeshed vertex po-
sitions on the original mesh and using barycentric interpolation.
We then use those updated per-vertex values directly in place of the
nearest neighbors, keeping the same loss formulation. We find this
improves stability for learning the deformation network, especially
for identities whose canonical geometry deviates heavily from the
FLAME template.

Objective function. Our full objective function is as follows:

𝐿 = _RGB𝐿RGB + _𝑣𝑔𝑔𝐿𝑣𝑔𝑔 + _mask𝐿mask + _FLAME𝐿FLAME+
_laplacian𝐿laplacian + _normal𝐿normal + _smooth𝐿smooth + (6)
_𝑟𝐿𝑟 + _spec𝐿spec + _light𝐿light

where 𝐿RGB and 𝐿𝑣𝑔𝑔 are respectively a photometric L2 loss in
log space and a perceptual loss [Simonyan and Zisserman 2015]
between masked ground-truth and rendered image, 𝐿mask is an L2
loss between ground truth and rasterized binary mask, 𝐿laplacian is a
laplacian smoothness regularizer for the canonical vertices, 𝐿normal
is a cosine similarity loss between neighboring face normals of the
canonical geometry. 𝐿FLAME regularizes the expression blendshapes
E from the deformation network D using the FLAME basis, 𝐿𝑟 and
𝐿spec enforce a predefined distribution for specular intensity 𝑘 and
surface roughness 𝑟 , 𝐿light penalizes strong deviations from white
light in the diffuse shading and 𝐿smooth is a smoothness regular-
ization for albedo and roughness. We refer the reader to FLARE
for more details on the individual loss functions. We set the rela-
tive weights _𝑖 of those terms as follows: _RGB = 1.0, _𝑣𝑔𝑔 = 0.1,
_mask = 2.0, _FLAME = 20.0, _laplacian = 100.0, _normal = 0.1,
_smooth = _𝑟 = _spec = _light = 0.01.

Single-stage training. We jointly optimize the canonical positions
𝑥𝑐 , deformation D, material M and lighting networks (𝑙𝑖

𝑑
, 𝑙𝑖𝑠 ) in

a single stage, with the material network equipped from the start
with hash-grid encoding [Müller et al. 2022]. To address the findings
of FLARE, wherein the model would overfit to color too quickly
resulting in over-smooth shapes, we use progressivemulti-resolution
hash encoding [Li et al. 2023] and enable the increasingly high-
resolution hash levels successively. Through this change, we achieve
high quality texture and geometry without having to learn M and
(𝑙𝑖
𝑑
, 𝑙𝑖𝑠 ) from scratch in a second stage. We exponentially decay the

learning rate of the canonical vertices at a rate of 𝛼 = 0.998 per
iteration. Additionally, we conjointly fine-tune the pre-estimated
pose and expression parameters to allow for better alignment for
frames where the pre-estimated values are imprecise.

3.3.2 Face Tracker Adaptation.

Objective function. The transfer learning stage described in Sec-
tion 3.2 is performed through gradient descent using the following
combined loss, borrowed from the coarse stage training of EMOCA
v2 [Danecek et al. 2022; Filntisis et al. 2023], and applied to the

training video frames of the identity of interest:

𝜙∗ = argmin𝜙 𝐿(𝜙) (7)
𝐿(𝜙) = _emo𝐿emo + _pho𝐿pho + _lmk𝐿lmk + _eye𝐿eye+ (8)

_mc𝐿mc + _𝜓𝐿𝜓 + _lipr𝐿lipr

where 𝐿emo, 𝐿pho, 𝐿lmk, 𝐿eye, 𝐿mc, 𝐿𝜓 are respectively the emotion
consistency loss, photometric loss, landmarks reprojection loss, rel-
ative landmarks-based eye closure loss and mouth closure loss, and
expression regularization loss as introduced in EMOCA. 𝐿lipr is the
lip reading loss based on [Filntisis et al. 2023] introduced in EMOCA
v2. _𝑖 designates the respective weight of each objective. We remind
that the self-supervised rendering loss 𝐿pho uses our personalized
geometry model (Eq. 1) in combination with our reflectance (Eq. 5),
computed using the corresponding lighting 𝑙𝑖

𝑑
, 𝑙𝑖𝑠 for each adaptation

video.

3.4 Test-time inference
After the encoder adaptation, geometry prediction for any unseen
image 𝐼 of the target identity is obtained by combining the in-
ferred parameters (\∗,𝜓∗) = 𝐸𝜙∗ (𝐼 ) with our personalized Mul-
tiFLARE geometry model (Eq. 1). As our neural geometry model
is pre-computed after the personalization stage, we can perform
inference in real time on standard GPUs (forward pass through 𝐸𝜙∗ ,
a Resnet-50 [He et al. 2016] network).

4 EXPERIMENTS
In this section we demonstrate our method on 6 datasets of different
subjects, chosen for diversity and ease of access to in-the-wild videos.
Each dataset is made up of 6 to 12 in-the-wild videos with durations
ranging between 10 seconds and 1 minute. These videos are cut
from interviews, talks and dialogue scenes. We provide sources for
the videos in our supplemental material. For practicality purposes,
we subsample all sequences at a 1:4 ratio for training. We train Mul-
tiFLARE at a resolution of 512 × 512. The images are further cropped
and resized to 224 × 224 for the transfer learning stage, a standard
resolution used by many recent feedforward face reconstruction
methods.
We compare our method with state-of-the-art feedforward face

capture methods: DECA [Feng et al. 2021], EMOCA [Danecek et al.
2022] and SMIRK [Retsinas et al. 2024]. Additionally, for fair com-
parison, we evaluate against EMOCA fine-tuned, per identity, on
the data used for building our adapted feedforward model.

4.1 Qualitative Evaluation
Multi-video avatar reconstruction. Given N videos, SPARK first

reconstructs a head avatar usingMultiFLARE. Fig. 9 shows examples
of the reconstructed image, the albedo, shading and geometry for
a few subjects. By leveraging multiple monocular sequences of a
person, we are able to disentangle the intrinsic face albedo from
the shading and recover fine geometric details. Additionally, our
improved deformation network (Eq. 2) is able to model precise subtle
expressive details.

Personalized real-time face capture. At test time, SPARK is able
to reconstruct 3D geometry in real-time given unseen images of
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Input DECA EMOCA EMOCA-t SMIRK SPARK SPARK

Fig. 3. Comparison to multiple state of the art face reconstruction methods. From left to right: input image, DECA [Feng et al. 2021], EMOCA [Danecek et al.
2022], EMOCA fine-tuned, SMIRK [Retsinas et al. 2024] and SPARK. See Fig. 8 for more examples. More results are also provided in our supplemental videos.

the person. Figure 3 shows qualitative results of SPARK compared
against existing methods. Our approach is able to reconstruct faces
that match the input image better than the previous state-of-the-
art. In addition to more precise overall alignment of facial features,
we find that our improved deformation model can represent fine
dynamic details of the face such as wrinkles and cheek movement
under large jaw poses. This demonstrates our method’s ability to
reconstruct details beyond what 3DMMs such as FLAME can repre-
sent, even on unseen images of the person, under illuminations and
poses that differ from the training set of videos. More results are
available in the supplemental videos, where we also demonstrate

how our accurate tracking can be used for face editing tasks such
as adding facial hair through texture mapping.

4.2 Quantitative Evaluation
Existing face capture methods generally do not evaluate the accu-
racy of the posed geometry. One common scheme is to evaluate the
estimated neutral face using 3D ground truth data, with benchmarks
such as NoW [Sanyal et al. 2019]. Differently, we seek to evaluate
the quality of the estimated poses and expressions. However, to our
knowledge there is no dataset that comprises multiple monocular
in-the-wild videos of the same subject in different contexts with
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Masked
input

Predicted
mask

EMOCA
render

SPARK
render

Fig. 4. Illustration of our semantic Intersection-over-Union metric. Left:
manually annotated semantic masks for FLAME. Right: two examples with
ground-truth segmentation, a render of EMOCA’s tracked mesh and our
tracked mesh.

𝐼𝑡−𝑘 𝐼𝑡 Warped image 𝐼w𝑡

Fig. 5. Illustration of our image warping metric. The background and hair
are masked out in both frames. We use the tracked geometry to backtrack
each rasterized pixel of image 𝐼𝑡 to a pixel in image 𝐼𝑡−𝑘 . The white area is
the occlusion mask, where we do not compare pixels.

per-frame 3D ground truths for evaluation. We also argue that even
recent dense landmark prediction models remain too sparse to accu-
rately evaluate state of the art dense geometric face capture methods.
Additionally, since landmarks are often used to train such methods,
the specific landmarks layout chosen for evaluation could yield an
unfair advantage to some methods over others (overfitting). Thus,
we introduce two new metrics for evaluating the posed geometry
independently of albedo and shading.

Semantic IoU metric. We use state-of-the-art semantic segmen-
tation method BiSeNet [Yu et al. 2018] to predict semantic masks
for the following head regions: skin, hair, nose, ears, eyes, upper lip,
lower lip and mouth interior. We mask out the hair region, as hair
is not modeled by current feedforward face capture methods. We
manually annotate the FLAME template mesh with corresponding
semantic masks, as shown in Fig. 4, allowing us to render a seman-
tic segmentation from the posed geometry. We compute the mean
intersection over union (IoU) over all the semantic classes of a given
frame:

𝐼𝑜𝑈𝑠 =
1
𝐶

𝐶∑︁
𝑖=1

|𝑀𝑖 ∩ �̂�𝑖 |
|𝑀𝑖 ∪ �̂�𝑖 |

where 𝐶 is the number of classes considered, �̂�𝑖 are the respec-
tive pseudo ground-truth semantic masks and𝑀𝑖 are the rasterized

Method Warp PSNR ↑ Semantic IoU ↑ Landmarks L1 ↓

DECA 29.501 0.616 0.047
SMIRK 30.062 0.649 0.035
EMOCA 29.979 0.644 0.036

EMOCA (fine-tuned) 30.275 0.673 0.027

Ours 30.647 0.702 0.027
Table 1. Quantitative results assessing the accuracy of the captured geome-
try on unseen data.

masks. In Fig. 4 we show examples of the predicted and rasterized
masks. The semantic IoU error measures the alignment of various
face regions independently of external factors such as scene illu-
mination, motion blur and high frequency variation on the skin.
However, it is sensitive to the accuracy of the semantic segmenta-
tion.

Geometry-based image warping metric. We introduce a second
metric directly based on the input images to measure the accuracy of
tracked geometry. The video sequence is sampled at fixed intervals
𝑘 . For each pair of consecutively sampled frames (𝐼𝑡−𝑘 , 𝐼𝑡 ), we use
the tracked geometry to reconstruct image 𝐼𝑡 from pixels of 𝐼𝑡−𝑘 .
More precisely, we use rasterized barycentric coordinates to map
each pixel in 𝐼𝑡 to a surface point on the tracked geometry. We then
project the corresponding point on the geometry of 𝐼𝑡−𝑘 to screen
space and retrieve the pixel value, forming a new warped image 𝐼𝑡𝑤 .
The image warping error is defined as follows:

𝑊PSNR (𝑡) = PSNR(𝐼𝑡 · 𝑜𝑡−𝑘,𝑡 , 𝐼w𝑡 · 𝑜𝑡−𝑘,𝑡 )
where 𝑜𝑡−𝑘,𝑡 is a binary occlusion mask for surface points that were
not visible in 𝐼𝑡−𝑘 . Note that we use semantic segmentation masks
to remove the background and hair from both images. In Fig. 5,
we illustrate the warping on a pair of images. While this metric
can be computed for any arbitrary pair of images, we find that it is
more reliable with a short frame interval, reducing potential issues
such as aliasing, incorrect shading and large occlusion masks. We
empirically choose an interval of 170 ms (5 frames at 30 frames per
second).

We perform k-fold cross-validation on every subject, with k cho-
sen such that we always leave out 2 or 3 sequences for evaluation.
All other sequences are used for training. We report the semantic
IoU and image warping metric as introduced in the previous section,
as well as landmarks reprojection errors averaged across subjects
in Table 1. We also report per-subject results in our supplemental
material. We outperform the competition numerically with similar
inference times, which confirms our superior qualitative results.

4.3 Ablation Study
Number of sequences. To our knowledge, we present the first

method that uses multiple in-the-wild monocular videos simulta-
neously for avatar reconstruction. To justify this choice, we ablate
the number of sequences we use, both for training MultiFLARE and
for the transfer learning. For 3 subjects for which we have at least
10 sequences, we leave 2 sequences out for evaluation and use 1, 2,
4 or 8 sequences for training. In Fig. 6 we show the reconstructed
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Ablation Warp PSNR ↑ Semantic IoU ↑ Landmarks L1 ↓

w/o transfer learning 30.073 0.621 0.042
w/o personalized appearance 30.449 0.685 0.028

Train MLP only 30.559 0.699 0.028
Train all 30.354 0.691 0.031

Ours 30.647 0.702 0.027

Table 2. Quantitative results of our ablation study, averaged over 6 subjects
with cross-validation.

Sequences Warp PSNR ↑ Semantic IoU ↑ Landmarks L1 ↓
1 31.574 0.665 0.037
2 31.659 0.681 0.036
4 31.911 0.695 0.033
8 32.028 0.706 0.030

Table 3. Ablation study on the numbers of sequences used for training.
Results are averaged for 3 subjects.

𝑁 = 1 𝑁 = 2 𝑁 = 4 𝑁 = 8

Fig. 6. Examples of reconstructed canonical geometry from MultiFLARE for
an increasing number of training sequences.

neutral mesh obtained from MultiFLARE. In Table 3 we report the
averaged IoU, image warping PSNR and landmarks reprojection
errors over 3 subjects. Using more sequences increases our accuracy
on all metrics, although we observe diminishing returns beyond
4. We attribute this improved performance to the more accurate
canonical mesh, deformation model and material properties, and to
the more diverse training set for transfer learning.

Positional encoding. We ablate the number of frequencies used
by the positional encoding of the deformer D (Eq. 2). In Fig. 7, we
show the varying level of detail that we are able to reconstruct.
Without positional encoding, the deformation network is unable
to reconstruct the dynamic fine details of the geometry: these de-
tails are either lost or baked into the static canonical mesh. With
additional frequencies, the fine details are much more defined and
dynamic; however, too many high frequencies can lead to a noisy
reconstruction.

Transfer learning. : In Table 2, we report quantitative results for
different transfer learning options: training the last backbone layers
and the MLPs (our proposed method), training the full backbones

Input 𝐿 = 0 𝐿 = 5 𝐿 = 10 𝐿 = 20

Fig. 7. Examples of reconstructed geometry using various levels of positional
encoding in the deformer network (Eq 2) of MultiFLARE.

and MLPs, and training only the MLP. We find that freezing most
of the backbone yields the best results: we keep the pre-trained
backbone’s ability to generalize to diverse inputs while still allow-
ing the highest-level features to adapt. We also evaluate the impact
of using the appearance model estimated in MultiFLARE instead
of the generic model from EMOCA. We show that our more pre-
cise appearance learned on the training sequences improves the
performance of our final model.

5 LIMITATIONS AND FUTURE WORK
The personalized 3D geometry and appearance reconstruction stage
of our method inherits several limitations that are specific to mesh-
based avatar reconstruction methods. Occlusions and face acces-
sories such as glasses cannot be represented accurately by our
method. Furthermore, while we qualitatively show that minor facial
hair can be handled, our canonical geometry and deformation model
do not differentiate hair from skin, hence large beards and long hair
cannot be accurately reconstructed. Similarly to FLARE [Bharadwaj
et al. 2023], the simplified integration of the rendering equation,
namely the split-sum approximation and pre-filtering of the envi-
ronment map, results in difficulties for modeling sharp specular
highlights and harsh shadows. In turn, this limits the accuracy of
our personalized appearance model, thus harming the performance
of our transfer-learning in such conditions.
The main limitations of the pre-trained face reconstruction en-

coder also apply to our method. While we do address some of the
limitations that stem from the use of a parametric 3DMM, we are still
subject to misalignment on extreme poses and strongly occluded
faces.

Future work could explore further refinement of the personaliza-
tion scheme and the modelling of per-sequence appearance vari-
ations to enhance the robustness and applicability of our method
across a broader range of scenarios. Our work could also be applied
to future state of the art face reconstruction methods, providing an
even better starting point for our transfer learning stage.

6 ETHICS
This research is conducted with a focus on advancing the accuracy
and realism of 3D face capture technologies for legitimate and ethical
applications, such as improving visual effects in the entertainment
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industry and enhancing user experiences in virtual and augmented
reality. Our work is not intended for the creation of deepfakes or
any unconsented face modifications. We firmly oppose the use of
our method for malicious purposes, including the generation of
misleading or harmful content. Our research is aimed solely at
contributing to the scientific community and legitimate industry
practices. We advocate for continued discussion and regulation to
ensure that advancements in this field are used in ways that respect
individual rights and community standards.

7 CONCLUSION
In this paper we present a methodology that performs a recon-
struction of 3D face geometry and appearance from a collection
of sources, which is then exploited to inform a transfer learning
process. By replacing the decoder of a pre-trained monocular face
reconstruction method with our personalized model, we achieve a
more accurate self-supervision objective. This enables more precise
expression and pose alignment, resulting in a new encoder capa-
ble or reconstructing 3D faces with expressive details from unseen
images in real-time.
While current state-of-the-art methods offer real-time regres-

sion of parametric 3D face models, they fall short in providing the
high-fidelity geometry required for high-end visual effects. By incor-
porating a more personalized approach, we address these limitations
and demonstrate that leveraging unconstrained reference imagery
can significantly enhance facial tracking quality.
Our results hold promising implications for the field of visual

effects and other applications where reference material of a person
is available. Overall, we contribute a novel and effective strategy for
improving the fidelity of monocular face capture, paving the way
for fully automated production-ready face capture.
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Input DECA EMOCA EMOCA-t SMIRK SPARK SPARK Input DECA EMOCA EMOCA-t SMIRK SPARK SPARK

Fig. 8. Additional results of our method compared to multiple face reconstruction methods. From left to right: input image, DECA [Feng et al. 2021], EMOCA
[Danecek et al. 2022], EMOCA fine-tuned, SMIRK [Retsinas et al. 2024] and SPARK.

Ground truth Render Albedo Shading Normals Ground truth Render Albedo Shading Normals

Fig. 9. Qualitative results from MultiFLARE. For a given subject, only the shading varies between sequences. While we only show samples for two sequences
per subject, the method was trained with 4 to 6 sequences for each subject.
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1 INTRODUCTION
In this supplemental document, we provide additional details on our
training process, sources for our dataset and detailed quantitative
results for each subject.

2 DATASET
We compile our dataset from online videos, for which we provide
sources in Table 1. We manually cut the videos to only include a
single viewpoint of the subject, removing frames where the person
is heavily occluded or not visible at all. In several cases, we sample
multiple sequences from the same source video. For the purposes of
our work, we treat those as different videos because of the entirely
different illumination conditions.

3 TRAINING DETAILS
In this section, we provide more information on the training of both
stages of our method.

3.1 MultiFLARE
We train MultiFLARE for 3000 iterations using a batch size of 4
images. The canonical geometry is remeshed [Botsch and Kobbelt
2004] to increase its resolution after 500 iterations. We use an Adam
optimizer [Kingma and Ba 2015] with a learning rate of 2e−4 for
the deformation networkD and canonical vertices 𝑥𝑐 , 1𝑒 − 3 for the
material networkM and light MLPs L𝑖 . We also optimize pose and
expression parameters with a learning rate of 1e−4. Training takes
about 20 minutes on an NVIDIA RTX A5000 GPU.
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https://doi.org/10.1145/3680528.3687704.

Deformation network. The deformation network D is initialized
through a quick supervised learning, minimizing | |D(𝛾 (x)) − E||2
at the positions of the FLAME [Li et al. 2017] template vertices. The
deformer will initially act as a continuous representation of the
FLAME expression basis E independent of topology. Note that we
only observed a marginal difference when subdividing the FLAME
template mesh for this stage, as the MLP’s inductive bias already
provides the deformer interpolation ability. We use the Adam op-
timizer with a learning rate of 2e−4 and train for 5000 iterations
(using all vertex positions of the template mesh at every iteration),
requiring under a minute on a NVIDIA RTX A5000 GPU.

Progressive multi-resolution hash encoding. We embed the input
of the material networkM using multi-resolution hash encoding
[Müller et al. 2022], with 16 resolutions levels ranging from 16 to
4096 and 2 features per level. These increasingly detailed levels
are progressively enabled [Li et al. 2023]: one every 250 training
iterations, and the remaining 8 at iteration 2000.

Network architectures. The material networkM and the illumi-
nation networks L𝑖 all have 3 hidden layers of size 64, with ReLU
activations. The final prediction of M is activated using Softplus
(𝛽 = 100), while L𝑖 outputs use a Sigmoid activation. The deformer
D has 4 hidden layers of size 128 with Softplus activations (𝛽 = 100).

3.2 Tracker adaptation
Weperform the transfer-learning stage using the EMOCAv2 [Danecek
et al. 2022; Filntisis et al. 2023] encoder. We freeze most of the en-
coder and only update the weights of the last ResNet-50 [He et al.
2016] block and the MLP head, for both the coarse shape encoder
and the expression encoder. We train for a maximum of 30 epochs
using the Adam optimizer with a learning rate of 1𝑒 − 5 and a batch
size of 16, using early stopping to minimize the risk of overfitting.
We set weights _emo, _eye, _mc, _𝜓 and _lipr to the values provided
by the authors’ implementation and increase _pho from 2 to 100.
Doing so, we take advantage of our more accurate pre-estimated
appearance model from MultiFLARE. On our datasets, training is
completed in 20 minutes on average, depending on early stopping.
The cumulative training time for both the MultiFLARE and the

transfer-learning stage is less than 45 minutes. Once trained, the
expression basis from the deformation network can be precomputed
and the convolutional encoder, a ResNet-50 with a MLP head, can
perform inference in real-time on modern hardware.

1

https://doi.org/10.1145/3680528.3687704
https://doi.org/10.1145/3680528.3687704


SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Baert et al.

0.50

0.55

0.60

0.65

0.70

0.75

Azalea Crews Gadot Obama Park Carell

Ours EMOCA fine-tuned EMOCA SMIRK DECA

26

28

30

32

34

Azalea Crews Gadot Obama Park Carell

Ours EMOCA fine-tuned EMOCA SMIRK DECA

Fig. 1. Results on 6 datasets for our semantic IoU (top) and geometry-based
image warping PSNR (bottom) metrics, compared against several state-of-
the-art methods. For each dataset, we perform cross-validation and average
the results.

4 DETAILED RESULTS
We report detailed per-subject results of our final personalized
method for the semantic IoU and image warping metrics. Fig. 1
shows a comparison of our method against state-of-the-art ap-
proaches for monocular face reconstruction. Fig. 2 shows an ablation
study of our method for various training schemes in the tracker
adaptation stage.
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Subject Video Cut duration Source

Barack Obama

1 01:00 https://www.youtube.com/watch?v=7G5kMmnAp_8
2 00:43 https://www.youtube.com/watch?v=1CW6NbZvR_w
3 01:00 https://www.youtube.com/watch?v=lbwlVwNWLzU
4 01:00 https://www.youtube.com/watch?v=PtKBjuQblqI
5 01:00 https://www.youtube.com/watch?v=-XecjJTorNs
6 00:56 https://www.youtube.com/watch?v=_iKNE4ndBdg
7 01:00 https://www.youtube.com/watch?v=siyBp8Csugk
8 01:00 https://www.youtube.com/watch?v=aip0BAWrdLw
9 01:00 https://www.youtube.com/watch?v=1Z9tiSqHzkg
10 01:00 https://www.youtube.com/watch?v=BIoBwblIxws

Iggy Azalea

1 00:29
https://www.youtube.com/watch?v=AMh5f8xRLRE2 00:40

3 00:27
4 00:44
5 00:43 https://www.youtube.com/watch?v=-jlPXv6Ehks
6 00:30 https://www.youtube.com/watch?v=YvB1o9wCO80
7 00:40 https://www.youtube.com/watch?v=AogzdSQ5LVE

Gal Gadot

1 00:32
https://www.youtube.com/watch?v=OJJMVLPdAwY2 00:13

3 00:29
4 00:30
5 00:17 https://www.youtube.com/watch?v=TJVf3KZAIG4
6 00:12 https://www.youtube.com/watch?v=iX01L8wmhBk

Terry Crews

1 01:12 https://www.youtube.com/watch?v=eM1XfAsGnHI2 00:42
3 00:47 https://www.youtube.com/watch?v=BvA_AinclK8
4 00:33 https://www.youtube.com/watch?v=fJjsbgk6e0A
5 00:59 https://www.youtube.com/watch?v=Im8itGAyZ6M
6 01:07 https://www.youtube.com/watch?v=hJeg601TIU4
7 00:49 https://www.youtube.com/watch?v=iux7NZ56Ei4
8 01:06 https://www.youtube.com/watch?v=PnoCfKY7L-s
9 00:28 https://www.youtube.com/watch?v=v0F3BhonHMM
10 00:58 https://www.youtube.com/watch?v=PmbXC3dlK_s

Randall Park

1 00:32 https://www.youtube.com/watch?v=ITzB_I0y_EM
2 00:59 https://www.youtube.com/watch?v=LKqvgRAZjZg
3 01:13 https://www.youtube.com/watch?v=nbfsEmeA9n4
4 01:03 https://www.youtube.com/watch?v=wepD5rUZf8k
5 00:43 https://www.youtube.com/watch?v=qT7nP4zQ05Y
6 00:59 https://www.youtube.com/watch?v=mTPchtLBIJI
7 00:50 https://www.youtube.com/watch?v=nbY34h54av0
8 00:58 https://www.youtube.com/watch?v=2eQN4nCW25c

Steve Carell

1 00:23

The Office season 2

2 00:16
3 00:22
4 00:10
5 00:15
6 00:09
7 00:08
8 00:27
9 00:18
10 00:30
11 00:19
12 00:29

Table 1. Sources for all videos of our dataset.
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